

MAX HT6000 Series – HT6122

High Efficiency, Dual Buck DC-DC Controller with internal Protocol, selectable switching frequency up to 350kHz

APPLICATION

- USB TypeC/TypeA fast charging applications
- LCD monitor/TV
- Desktop PC
- Automotive ADAS Power
- Low EMI Application (Patent Pending)

GENERAL DESCRIPTION

HT6122 is an easy to use, high efficiency, dual-channel, synchronous step-down switching controller designed for high-power dual ports fast charging applications. It has one channel built in QC Protocol for easy configuration to one Type-A and one Type-C fast charging output. With one channel of Type A fast charging, another channel is flexible to be used as a general purpose DC-DC applications, fitting different needs of users' requirements.

HT6122 has a wide input voltage range from 7 V to 36 V, supports output voltages from 3.6V to 20V with typical current of 3A, the Switching frequency is selectable to covers wide range of applications. The maximum output power can be up to 60W at each channel.

HT6122 has soft start function, which can prevent the inrush current at startup from affecting the stability of the input power.

HT6122 has a variety of protection, such as input overvoltage protection, undervoltage protection, output over current protection, overvoltage, undervoltage, short circuit

protection, and etc.

FEATURES

Dual-Channel Synchronous Buck converter

- Wide input voltage range: 7V to 36V
- Output current up to 3A at each channel
- One channel built in QC Protocol
- External feedback for another channel
- Dual Channel Fast Charging simultaneously
- Selectable switching frequency at 150kHz, 250kHz and 350kHz
- Support CC / CV mode
- Soft start

Multi-Protection

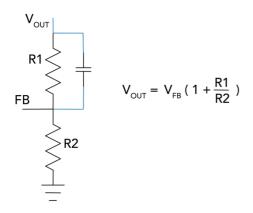
- Input under-voltage lockout (UVLO)
- Input over-voltage protection (IVP)
- Output over-voltage protection (OVP)
- Output short-circuit protection (SCP)
- Over-temperature protection (OTP)

Input Protection

If the input voltage is higher than IVP or smaller than Input UVLO, both buck channels stop the gate driver, reset and enter hiccup mode. It returns to Normal when the faults are cleared.

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Output Protection


The Output Under-voltage Lockout threshold and the Output Over-voltage Protection are set at $V_{\text{OUT}}*60\%$ and $V_{\text{OUT}}*118\%$. Once Output UVLO or OVP is triggered, the specific channel stops the gate driver, reset and enter hiccup mode.

Soft Start

HT6000 series employs an internal soft start in the buck converter to prevent large inrush current and overshoots of V_{OUT} . The soft start time is 8ms in the design.

Feedback and Output Voltage

HT6122 provides an external FB for setting the output voltage. Usually feedback resistor divider tap is connected and V_{FB} is regulated at 1V. The relationship between the V_{OUT} and the resistor divider tap is as follows:

Frequency Selection

The switching frequency can be selected by applying different condition to the pin FREQ.

FREQ state	f _{sw} (kHz)		
Z	150		
L	250		
Н	350		

Efficiency and External FET Rdson

The accuracy of the output voltage and the conversion efficiency is highly affected by the R_{dson} of the external FET. The lower the R_{dson} the higher the efficiency and voltage accuracy.

DEVICE INFORMATION

Part Number	Package	Shipping	
HT6122	5x5 QFN32	490 / tray	

See package outline and dimensions on p.8 of this datasheet.

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Dual Port SPEED! Fast Charging is just a Breeze

Block Diagram

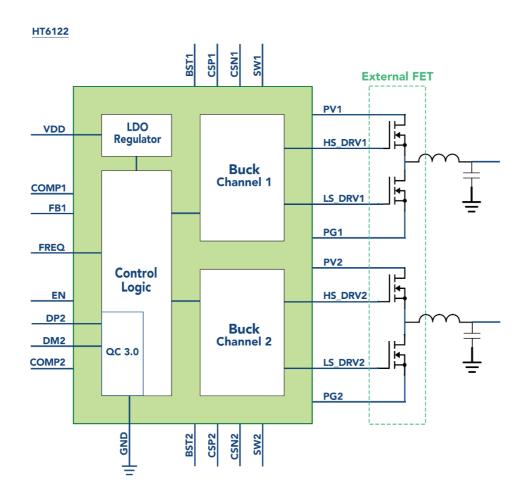


Fig. 1 HT6122 Block diagram

Absolute Maximum Ratings

PV1, PV2, SW1, SW2, EN, BST1, BST2	-0.3V to 40V
CSP1, CSN1, CSP2, CSN2	-0.3V to 22V
VDD, COMP1, COMP2, FB1, FB2, COMB	-0.3V to 6V
Operation Temperature	-40°C to 85 °C
Junction Temperature	-40°C to 125°C
Storage Temperature	-65°C to 125°C
Soldering Temperature	300°C

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

HT6122 (Preliminary)

Electrical Characteristics (Vin=8V, TA=25°C unless specified) (this table to be finalized)

Daramentara	Complete al	Tost Conditions	Rating			Unit
Parameters	Symbol	Test Conditions	MIN	TYP	MAX	
Input Characteristics				•	•	
Input Voltage	V _{IN}		7		36	V
Input under voltage lockout threshold	V _{UVLO}			5.5		V
Input under voltage lockout Hysteresis	V _{UVHYS}			0.6		V
Quiescent current	Ιq			9		mA
EN Threshold	V_{EN}			1.35		V
EN Hysteresis	V _{ENHYS}			110		mV
VDD regulator	V_{REG}			5.3		V
Switching Characteristics			•	•	•	
		FREQ=Z		150		kHz
Switching Frequency	f_{sw}	FREQ=L		250		kHz
		FREQ=H		350		kHz
Minimum Off-Time	t _{OFF, Min}			80		ns
Output Characteristics						
Output Voltage Range	V_{OUT}		3.6		20	V
Cycle by cycle Current Limit	I _{OCP}			6		Α
Output Channel 1 control	by FB					
Output voltage Reference	V_{FB}			1		V
Output Current limit	I _{LimIT_FB}	Rcs =10 mΩ		3		Α
Output Channel 2 control	II		ı	ı		
·		QC5V: D+ = 0.6V, D- = 0V		5		V
	V _{оит_асз}	QC9V: D+ = 3.3V, D- = 0.6V		9		V
Single Channel Output		QC12V: D+ = 0.6V, D- = 0.6V		12		V
Voltage (QC3)		V _{IN} =24V, QC20V: D+ = 3.3V, D- = 3.3V		20		V
	V _{STEP_QC3}	Cont.Mode: D+ = 0.6V, D- = 3.3V		200		mV
		Rcs = 10 m Ω , V _{OUT} =5V		3.3		Α
Single Channel Output	Іоит_дсз	Rcs = 10 m Ω , V _{OUT} =9V		2.1		Α
Current		Rcs = 10 m Ω , V _{OUT} =12V		1.6		Α
(QC3)		V_{IN} =24V, Rcs = 10 m Ω , V_{OUT} =20V		1		Α

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

HT6122 (Preliminary)

Dawn marketin	Parameters Symbol Test Conditions		Rating			Unit		
Parameters			MIN	TYP	MAX			
Protection								
Input Over-voltage Protection								
Input Over-Voltage Protection	V _{OVP}			39		V		
Output Under-voltage Lockout								
Output Under-voltage Protection	V _{UVLO}			V _{FB} * 60%		V		
Output Over-voltage Protection								
Over-Voltage Protection	V _{OVP}			V _{FB} * 118%		V		
Over-Temperature Protection								
Thermal Shutdown	T_{SD}	Increasing Temperature		140		°C		
Thermal Shutdown Hysteresis	T _{SD_HYS}	Decreasing temperature		30		°C		

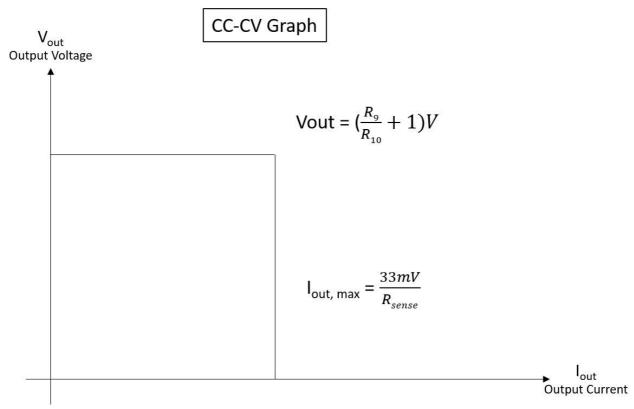


Fig. 2 CC-CV Graph

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Dual Port SPEED Fast Charging is just a Breeze

Pin Configuration

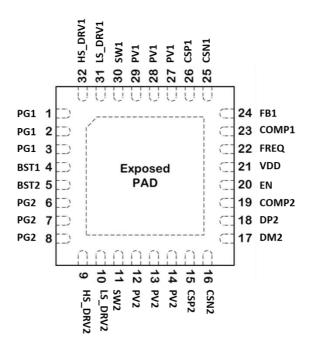


Fig. 3 32-pin QFN, 5x5 mm², 0.5mm pitch TOP VIEW

Pin Functions

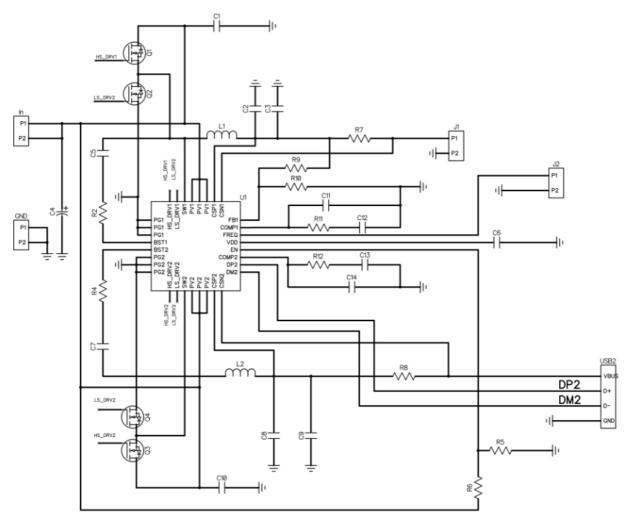
HT6122 package: QFN32 (5mmx5mm)

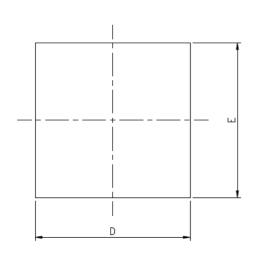
HT0122 package: QFN32 (SIIIIIXSIIIII)								
Pin	Name	Description	Pin	Name	Description			
1	PG1	Power Ground Channel 1	17	DM2	USB D- channel 2			
2	PG1	Power Ground Channel 1	18	DP2	USB D+ channel 2			
3	PG1	Power Ground Channel 1	19	COMP2	Compensation Pin 2			
4	BST1	High Side Power Channel 1	20	EN	Chip Enable			
5	BST2	High Side Power Channel 2	21	VDD	VDD Regulator			
6	PG2	Power Ground Channel 2	22	FREQ	Frequency selection			
7	PG2	Power Ground Channel 2	23	COMP1	Compensation Pin 1			
8	PG2	Power Ground Channel 2	24	FB1	Feedback Pin 1			
9	HS_DRV2	High Side Gate Drive Channel 2	25	CSN1	Current Sense Negative 1			
10	LS_DRV2	Low Side Gate Drive Channel 2	26	CSP1	Current Sense Positive 1			
11	SW2	Inductor Connection Channel 2	27	PV1	Input Power Channel 1			
12	PV2	Input Power Channel 2	28	PV1	Input Power Channel 1			
13	PV2	Input Power Channel 2	29	PV1	Input Power Channel 1			
14	PV2	Input Power Channel 2	30	SW1	Inductor Connection Channel 1			
15	CSP2	Current Sense Positive 2	31	LS_DRV1	Low Side Gate Drive Channel 1			
16	CSN2	Current Sense Negative 2	2 32 HS_DRV1 High Side Gate Drive Channel 1					
33	33 EPAD Signal Ground and Thermal Dissipation Pad							

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

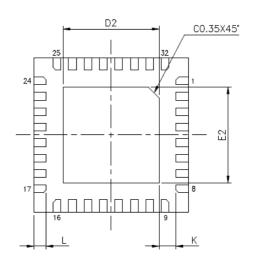
Dual Port SPEED! Fast Charging is just a Breeze

Typical Application Circuit

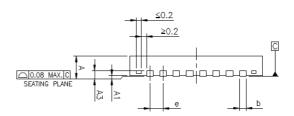



Fig. 4 HT6122 application schematic diagram

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.



Dual Port SPEED!


Package Outline and Dimensions

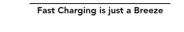
Top View

Bottom

Side View

	DACKACE TYPE						
	PACKAĢE TYPE						
JEDEC OUTLINE	١ ١	/O-22	0	MO-220			
PKG CODE	WQFN(X532)			VQFN(Y532)			
SYMBOLS	MIN.	NOM.	MAX.	MIN. NOM. MA			
Α	0.70	0.75	0.80	0.80	0.85	0.90	
A1	0.00	0.02	0.05	0.00	0.02	0.05	
A3	0.203 REF.			0.203 REF.			
Ь	0.18	0.25	0.30	0.18 0.25 0.30			
D	5.00 BSC			5.00 BSC			
Е	5.00 BSC			5.00 BSC			
е	0.50 BSC			0.50 BSC			
Ĺ	0.35	0.40	0.45	0.35	0.40	0.45	
K	0.20	_	_	0.20			

NOTES :


- NOTES:

 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. DIMENSION & APPLIES TO METALLIZED TERMINAL
 AND IS MEASURED BETWEEN 0.15mm AND 0.30mm
 FROM THE TERMINAL TIP. IF THE TERMINAL HAS
 THE OPTIONAL RADIUS ON THE OTHER END OF THE
 TERMINAL, THE DIMENSION & SHOULD NOT BE
 MACSURED IN THAT RADIUS AREA.
 3. BILATERAL COPLANARTY ZONE APPLIES TO THE
 EXPOSED HEAT SINK SLUG AS WELL AS THE
 TERMINALS.

Fig. 5 32-pin QFN, 5mm x 5mm, 0.5mm pitch

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Dual Port SPEED

HT6000 Series

Fast Charging is just a Breeze

Hong Kong Office

Tel: (852) 36195375
Email: sales@hightt.com
URL: https://hightt.com

Address:

Unit 713, 7/F, 12W, 12 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong

微信 WeChat

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.