

MAX SPEED HT6000 Series – HT6329E (Evaluation Version)

High-Efficiency, External MOSFET Dual-Buck DC-DC Controller with 150kHz/250kHz/350kHz Selectable Frequency

APPLICATION

- Automotive ADAS Power Supply
- Automotive LED Lighting
- CCTV Power Supply
- LCD / TV / Monitor Power
- Wireless Router Power
- USB Type C/A Fast Charging Application
- Low EMI Application (Patent Pending)
- Combine-mode, support single-channel, higher power (*Patent Pending*)
- Industrial Applications

GENERAL DESCRIPTION

HT6329E is an easy to use, high efficiency, dualchannel, synchronous step-down switching controller designed for high-power dual buck controller, in single chip.

HT6329E allows a wide input voltage range from 4.7V to 36V, and provides a wide range of output. It can also deliver up to 100W or higher with appropriate FETs at each channel. It also provides selectable switching frequency for circuit design with different size of inductor at high conversion efficiency.

HT6329E has soft start function, which prevent the inrush current at startup from affecting the stability of the input power. On the protection side, it has a variety of protections for both input and output against over voltage, short circuit or under voltage conditions (see Multi-Protection section).

The external feedback provides the flexibility in interfacing with protocol IC to provide fast battery charging scheme like QC3.0 or PD3.1.

FEATURES

Dual-Channel Synchronous Buck Converter

- Wide input voltage range: 4.7V to 36V
- Dual Channel with independent input voltage
- Independent external feedback for each channel
- Selectable switching frequency at 150kHz, 250kHz and 350kHz
- Support combine mode for high output power applications
- Support CC-CV mode
- Soft start

Multi-Protection

- Input under-voltage lockout (UVLO)
- Output over-voltage protection (OVP)
- Output short-circuit protection (SCP)
- Over-temperature protection (OTP)

DEVICE INFORMATION

Part Number	Package	Dimensions (mm)
HT6329E	WQFN32	5.0 x 5.0 x 0.75

See package outline and dimension on page 12.

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Typical Application Circuit

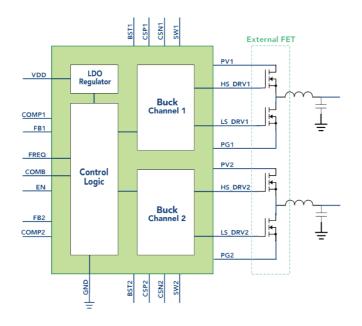
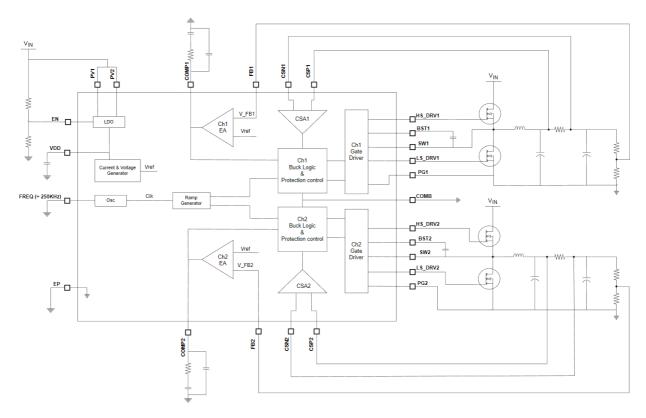



Fig. 1.1 – HT6329E Application Circuit (COMB=0)

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Typical Application Circuit (Cont.)

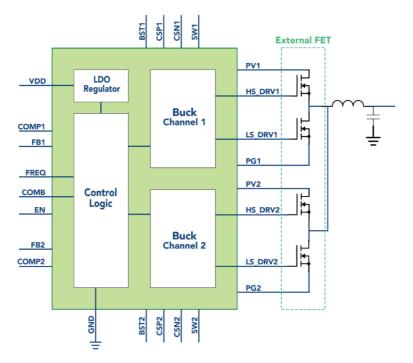
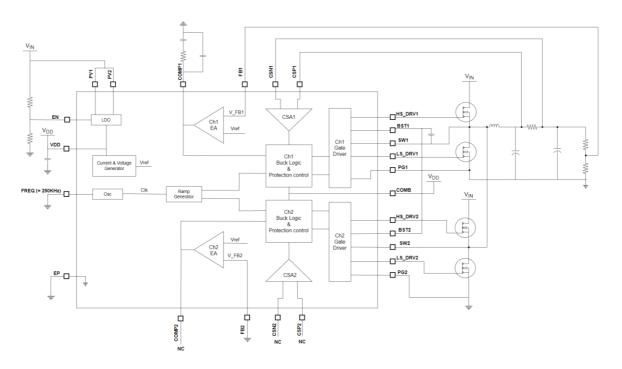



Fig. 2.1 – HT6329E Application Circuit (COMB=1)

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Pin Configuration

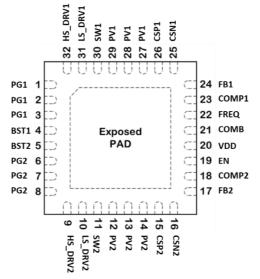


Fig. 3 - 32-pin QFN, 5x5 mm², 0.5mm pitch TOP VIEW

Pin	Name	Description	Pin Name		Description
1	PG1		17	FB2	Feedback Channel 2
2	PG1	Power Ground Channel 1	18	COMP2	Compensation Channel 2
3	PG1		19	EN	Chip Enable, 1.35V enables the device
4	BST1	Bootstrap Channel 1, Connect a capacitor (recommended 0.1uF) to SW1.	20	VDD	VDD Regulator, Connect a decoupling capacitor to GND. Recommended 2.2uF.
5	BST2	Bootstrap Channel 2, Connect a capacitor (recommended 0.1uF) to SW2.	21	СОМВ	Combine Mode Input, Logic High enables combine mode; Logic Low disables combine mode.
6	PG2	Power Ground Channel 2	22	FREQ	Frequency Selection, See Application Information Section for detail
7	PG2		23	COMP1	Compensation Channel 1
8	PG2		24	FB1	Feedback Channel 1
9	HS_DRV2	High Side Gate Drive Channel 2	25	CSN1	Current Sense Negative Channel 1
10	LS_DRV2	Low Side Gate Drive Channel 2	26	CSP1	Current Sense Positive Channel 1
11	SW2	Inductor Connection Channel 2	27	PV1	Input Power Channel 1,
12	PV2	Input Power Channel 2,	28	PV1	Connect a capacitor
13	PV2	Connect a capacitor	29	PV1	(recommended 1uF) to PV1.
14	PV2	(recommended 1uF) to PV2.	30	SW1	Inductor Connection Channel 1
15	CSP2	Current Sense Positive Channel 2	31	LS_DRV1	Low Side Gate Drive Channel 1
16	CSN2	Current Sense Negative Channel 2	32	HS_DRV1	High Side Gate Drive Channel 1
33	EPAD	Signal Ground & Thermal Dissipation	n Pad		

Pin Functions

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Absolute Maximum Ratings

PV1, PV2, SW1, SW2, EN	-0.3V to 36V
HS_DRV1, HS_DRV2, BST1, BST2	-0.3V to 36V
LS_DRV1, LS_DRV2	-0.3V to 6V
CSP1, CSN1, CSP2, CSN2	-0.3V to 22V
VDD, COMP1, COMP2, FB1, FB2, FREQ, COMB	-0.3V to 6V
Operating Temperature Range	-40°C to 85°C
Maximum Junction Temperature	-40°C to 125°C
Storage Temperature Range	-65°C to 125°C
Soldering Temperature	300°C

Electrical Characteristics (T_A=25°C unless specified)

				Rating		
Parameters Sy		Test Conditions	MIN	MIN TYP M		AX Unit
Input Characteristics		·	•	•	•	
Input Voltage	V _{IN}		4.7		36	V
EN Threshold	V _{EN}			1.35		V
EN Hysteresis	V _{ENHYS}			110		mV
Quiescent Current	۱ _Q	Output at no load		1.5		mA
Shutdown Current	I _{stb}	V _{EN} = 0V		10		μΑ
COMB Input						
Input Threshold High	V _{COMB_TH_H}			3.5		V
Input Threshold Low	V _{COMB_TH_L}			1		V
Output Characteristics	·	·		•		
Output Voltage Range	V _{OUT}		3		V _{IN} *95%	v
Output Current Limit	I _{Limit_FB}	R _{SENSE} = 10mΩ		3.3		А
Reference Voltage						
Output Voltage Reference	V _{FB}	Measured at FB1, FB2		1		V
Regulator Reference	V _{DD}	Measured at VDD		5.4		V
Switching Characteristics	·					
		FREQ=Z		150		kHz
Switching Frequency	f _{sw}	FREQ=L		250		kHz
		FREQ=H		350		kHz
Minimum On-Time	t _{on, Min}			80		ns
Dither Generator	·	·		•		
Dither Modulation Frequency	f _{DITH}			TBD		kHz
Maximum Switching Frequency	f _{oscmax}	ТВД			kHz	
Minimum Switching Frequency	f _{oscmin}			TBD		kHz

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Electrical Characteristics (TA=25°C unless specified)

			Rating				
Parameters	Symbol	Test Conditions	MIN	ТҮР	MAX	Unit	
Input Under-voltage Lockout							
Input Under-Voltage Lockout Threshold	V _{UVLO}			4.7		V	
Input Under-Voltage Lockout Hysteresis	VUVHYS		0.53	0.64	0.71	V	
Output Under-voltage Lockout							
Output Under-voltage Protection	V _{UVLO}			V _{OUT} *60%		V	
Output Over-voltage Protection							
Over-Voltage Protection	V _{OVP}			V _{OUT} *120%		V	
Over-Temperature Protection							
Thermal Shutdown	T _{SD}	Increasing Temperature		140		°C	
Thermal Shutdown Hysteresis	T _{SD_HYS}	Decreasing temperature		30		°C	

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Functional Block Diagram

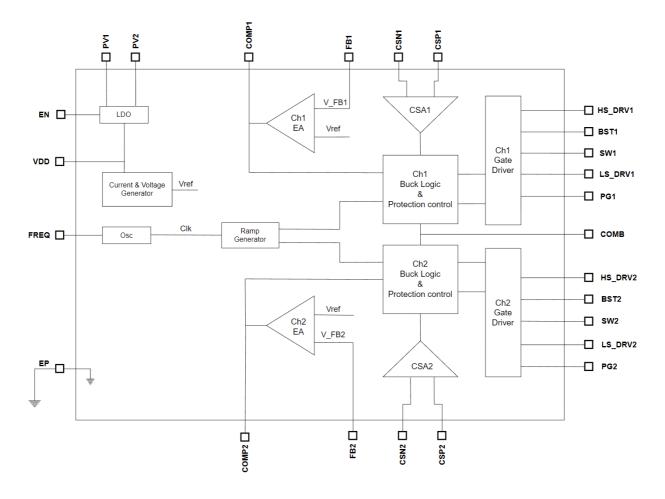


Fig. 4 – Functional Block Diagram

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Application Information

Input Protection

If the input voltage is smaller than Input UVLO, both buck channels stop the gate driver, reset and enter hiccup mode. It returns to Normal when the faults are cleared.

Output Protection

The Output Under-voltage Lockout threshold and the Output Over-voltage Protection are set at V_{OUT} *60% and V_{OUT} *120%. Once Output UVLO or OVP is triggered, the specific channel stops the gate driver, reset and enters hiccup mode.

Soft Start

HT6000 series employs an internal soft start in the buck converter to prevent large inrush current and overshoots of V_{OUT} . The soft start time is 20ms in the design.

Feedback and Output Voltage

HT6329E provides an external FB for setting the output voltage. The feedback resistor divider tap is connected and V_{FB} is regulated at 1V. The relationship between the V_{OUT} and the resistor divider tap is as follows:

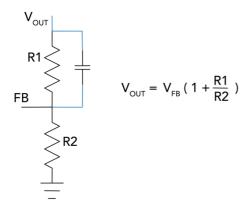


Fig. 5 – Feedback Resistor Network Design

Frequency Selection

The switching frequency can be selected by applying different condition to the pin FREQ.

FREQ state	f _{sw} (kHz)		
Z	150		
L	250		
H (Tied to VDD)	350		

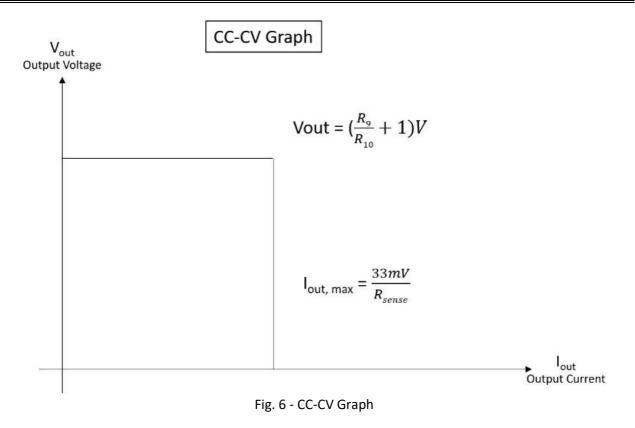
The efficiency of the conversion depends on the switching FET. Usually, the efficiency is higher at lower frequency because of lower switching loss.

Combine Mode

The Combine Mode can be enabled by setting COMB = VDD. In Combine Mode, channel 1 takes up the output current from channel 2. Once the Combine Mode is active, the control over channel 2 is disable. Short COMB to GND when unused.

Efficiency and External FET Rdson

The accuracy of the output voltage and the conversion efficiency is highly affected by the R_{dson} of the external FET. The lower the R_{dson} the higher the efficiency and voltage accuracy.


Constant Voltage / Constant Current Mode

HT6329E has the capability to operate in either CV (constant voltage) mode or CC (constant current) mode, with a smooth transition from CV to CC (See Fig.6). When in CV mode, it regulates the output voltage. Once the output current limit threshold is reached, HT6329E switches to CC mode. In CC mode, the output voltage decreases while the output current remains clamped at the predefined values. The current limit can be determined using the following equation.

$$I_{out(\max)} = \frac{33mV}{R_{sense}}$$

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Typical Application Schematic

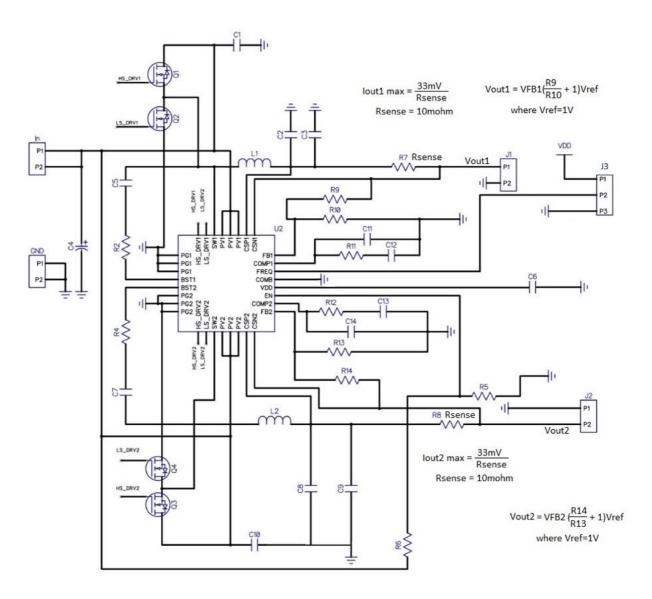
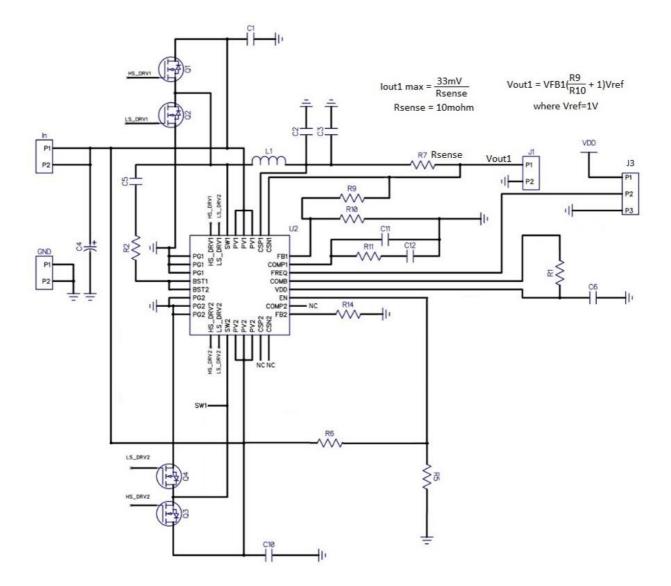
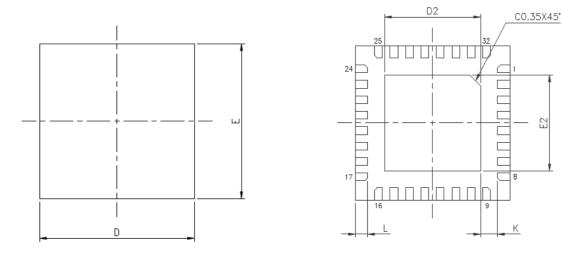


Fig. 7 - HT6329E simplified schematic (COMB = 0)

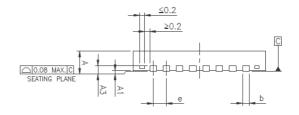
High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Typical Application Schematic (Cont.)




Fig. 8 - HT6329E simplified schematic (COMB = 1)

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.


Package Outline and Dimensions

32-pin QFN (5mm x 5mm, 0.5mm pitch)

Top View

Bottom

Side View

	PACKAGE TYPE						
JEDEC OUTLINE	MO-220			MO-220			
PKG CODE	WQFN(X532)			VQFN(Y532)			
SYMBOLS	MIN.	NOM.	MAX.	MIN. NOM. M			
Α	0.70	0.75	0.80	0.80	0.85	0.90	
A1	0.00	0.02	0.05	0.00 0.02 0		0.05	
A3	0.203 REF.			0.203 REF.			
Ь	0.18	0.25	0.30	0.18 0.25 0.30			
D	5.00 BSC			5.00 BSC			
E	5.00 BSC			5.00 BSC			
е	0.50 BSC			0.50 BSC			
L	0.35	0.40	0.45	0.35	0.40	0.45	
К	0.20	_	_	0.20			

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS. 2. DIMENSION & APPLIES TO METALUZED TERMINAL
- DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL THE. IT THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION & SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
 BILATERAL COPLANARTY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.

Dual Port SPEED Fast Charging is just a Breeze

HT6329E (Preliminary)

HT6000 Series Fast Charging is just a Breeze

Hong Kong Office Tel: (852) 36195375 Email: <u>sales@hightt.com</u> URL: https://hightt.com Address: Unit 713, 7/F, 12W, 12 Science Park West Avenue, Hong Kong Science Park, Shatin, Hong Kong 微信 WeChat

High Tech Technology Limited (HTT) reserves the right to make changes at any time, of any products or specifications herein, without further notice. HTT assumes no responsibility for the use of the information, nor does it assume any responsibility for any infringement of patents or other rights of third parties resulting from the use of the information. HTT does not grant any license under patent or patent rights, either implicitly or otherwise.